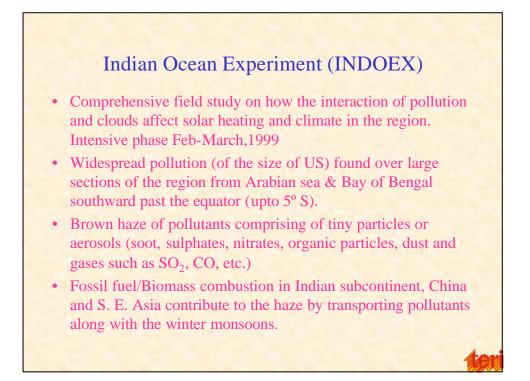
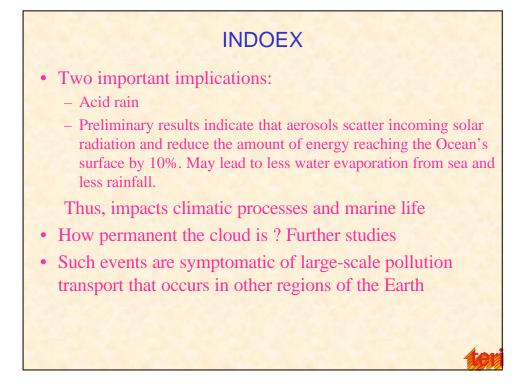


I DON		(area sources pl			
I PS)	n 1990 (kt SO ₂)				
L. O) .					
Country	Region	Emission			
Bandladesh	Dhaka	17.0			
Darigidacon	Rest of Country	101.0			
Bhutan		1.5			
India	Andhra Pradesh	388.1			
	West Bengal	222.3			
	Bihar	363.1			
	Bombay	140.7			
	Calcutta	39.4			
	Delhi	44.6			
	East Himalayas: Assam-NE Highlands	66.5			
	Gujarat	388.9			
	Haryana	101.5			
	Karnataka-Goa	134.1			
	Kerala	55.2			
	Madras	49.5			
	Maharashtra-Dadra Nagar-Haveli-Daman-Diu	520.0			
	Madhva Pradesh	412.1			
	Orissa	190.5			
	Punjab-Chandigarh	179.4			
	Rajasthan	161.0			
	Tamil Nadu-Pondicherry	350.3			
	Uttar Pradesh	641.5			
Manal	Jammu-Kashmir-Himachal Pradesh	<u>23.2</u> 122.3			
Nepal Pakistan	Karachi	105.1			
rakisian	Lahore	20.7			
	NW Frontier Provinces Baluchistan	102.1			
		285.1			
	Puniab Sind	101.1			
Sri Lanka	Sinu	41 9			


Country-to-country source-receptor matrix

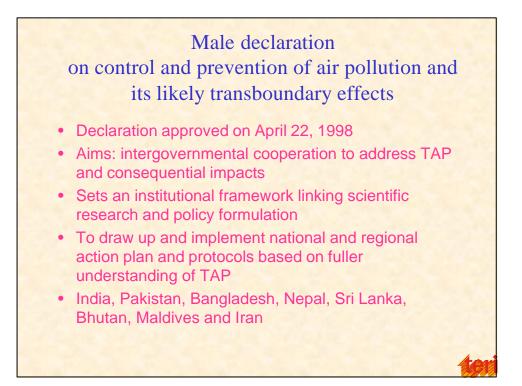

The columns represent the source country while the rows represent the receptor country. Shown is the total annual sulfur deposition expressed in tonnes S/yr.

Source/ Receptor	Bangladesh	Bhutan	India	Nepal	Pakistan	Sri Lanka
Bangladesh	1.77E+04	1.27E+00	1.64E+04	1.77E+02	2.30E+02	4.34E-03
Bhutan	3.83E+02	1.63E+02	8.14E+03	4.37E+02	8.65E+01	5.57E-18
India	1.58E+04	7.14E+01	1.06E+06	5.26E+03	1.88E+04	5.49E+02
Nepal	3.22E+02	1.78E+00	4.06E+04	2.21E+04	1.04E+03	1.92E-20
Pakistan	0.00E+00	3.46E-09	1.73E+04	3.97E+00	1.16E+05	0.00E+00
Sri Lanka	6.72E+00	4.99E-07	2.97E+03	5.70E-01	6.63E-01	8.15E+03

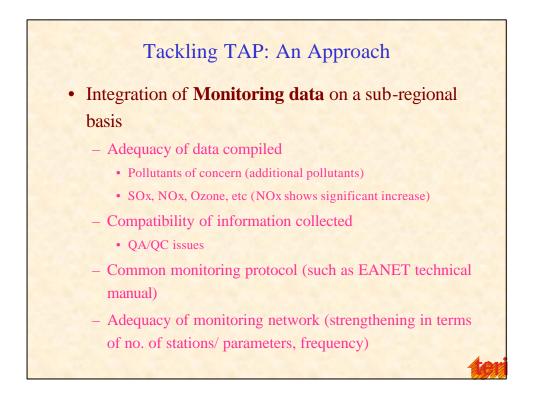
Source: Foell et.al, December, 1995

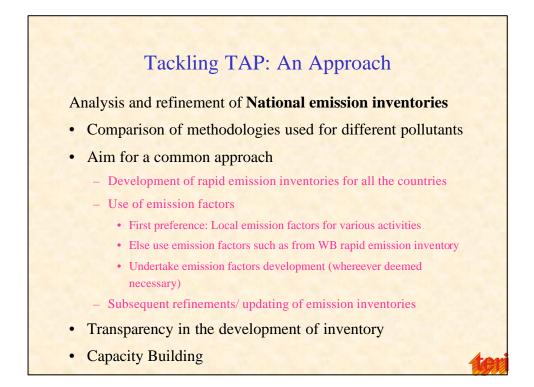
(Final report submitted to The World Bank)

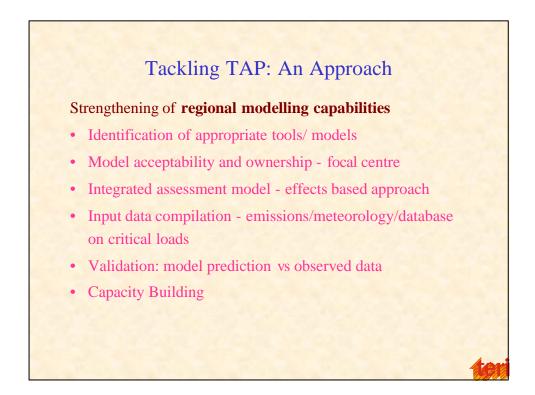
International agreements to control Trans-boundary Air Pollution

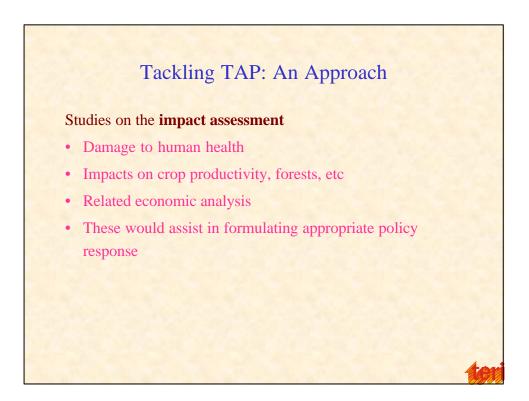

- 1975: negotiations on framework convention began
- Convention on long range transboundary air pollution (LRTAP)
 - Adopted in 1979, came into force in 1983
 - Requires ratifying states to limit or, if possible, to gradually reduce air pollution within their boundaries
 - Extended by 8 protocols; Now has 49 parties
- EMEP protocol
 - Adopted: 1984; in force: 1988
 - Created a trust fund to provide long term financing for the *co-operative programme for monitoring and evaluation of the long range transmission of air pollutants* in Europe.

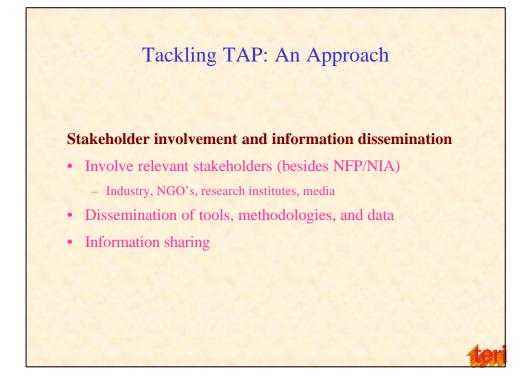
International agreements to control Trans-boundary Air Pollution

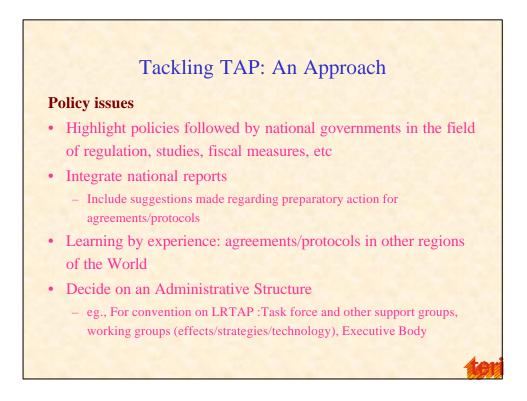

- First Sulphur protocol
 - Adopted: 1985; in force: 1987
 - Requires ratifying states to reduce their emissions or transboundary fluxes of sulphur at least 30% (from 1980 levels) by the end of 1993
- NOx Protocol
 - Adopted: 1988; in force: 1991
 - Requires ratifying states to freeze emissions of nitrogen oxides at 1987 levels by the end of 1994
- VOC protocol
 - Adopted: 1991
 - Requires ratifying states to reduce emissions of VOCs by 30% by the end of 1999


International agreements to control Trans-boundary Air Pollution


- Second Sulphur protocol
 - Adopted: 1994; in force: 1998, to replace the previous one
 - Effects based approach, the critical load approach Signatories agreed to reduce the gap between existing and critical loads
 - Differentiation of emission reduction obligation of parties
- 1998: Protocol on heavy metals; not yet in force
- 1998: Protocol on persistent organic compounds; not yet in force
- 1999: Protocol to abate Acidification, Eutrophication, and Ground level Ozone; not yet in force
- The United Nations Economic Commission for Europe (UNECE) has played a significant role in all these agreements






Tackling TAP: An Approach

Strategies to prevent and minimize air pollution

- Regional cooperation in cleaner energy sources (hydel, natural gas)
- Fuel quality improvement (eg., reduced S in diesel)
- Improvement in energy efficiency
- Sharing of information and cooperation in adoption of clean process technologies as well as EOP control technologies

Tackling TAP: An Approach

Policy issues

- Financial assistance for tackling TAP: Multilateral (UNEP/SACEP), SIDA, National funds, others
- Scientific process to aid policy making : Leading to signing of Agreement/ Protocol